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Abstract  
'Historical reference' is the ability to refer to information in prior states of a program's 

computation history. We use program transformation to achieve reasonably efficient 
implementations of specifications making use of historical reference. These implementations 
remember sufficient information as they execute, and use conventional queries of this 
remembered information in place of the historical references of the original specifications.  

We show how the design of these transformations exemplifies issues common to 
transformational implementation – choice between special- and general-purpose transformations, 
layering of transformations and normal forms, transformational definition of language 
extensions, and targeting transformations to take advantage of the capabilities of the target 
language.  

1. INTRODUCTION  
Historical reference means the ability to refer to information in prior states of the 

computation history. For example, in an imperative program, it would mean reference to past 
values of data structures. Historical reference is not usually provided as a programming language 
concept because in general it requires that all prior information be retained from state to state – 
this would imply unacceptably large storage space costs. Specification languages are under no 
such limitations, so they often provide historical reference, indeed, they often provide temporal 
reference - the ability to refer to information in not only past states, but also future states. Herein 
we will consider only historical reference; implementation of future reference appears very hard.   
 

This paper shows how program transformation can be used to achieve reasonably efficient 
implementations of specifications that make use of historical reference, and discusses some 
general issues of program transformation that are exemplified by this particular effort. The paper 
is organized as follows:  

section 2 describes what we mean by 'historical reference', and shows how it is provided within 
our specification language.  
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section 3 presents the general-purpose transformation that we have built for automatically 
removing all instances of historical reference in a specification. The objective of this 
transformation is to produce a reasonably efficient implementation of historical reference.  

section 4 considers some special cases of historical reference that admit to more efficient 
implementation than that provided by our general-purpose transformation. We show how 
special purpose transformations can handle these, and then discuss the tradeoffs between 
the alternatives of using a suite of such special case transformations and using follow-on 
transformations to optimize the code produced by the general-purpose historical removal 
transformation.  

section 5 shows how we can write transformations that take advantage of a key feature of our 
target language. We show how transformations can produce code that use this feature, and 
discuss the benefits and disadvantages of this alternative.  

section 6 outlines a way of providing alternative notations for specification of historical 
reference. These are defined by transformation, i.e., translated into the 'kernel' form of 
historical reference. We discuss why it is appropriate to leave the historical reference 
removal transformations operating on the kernel language.  

section 7 reviews related work in the use and transformation of historical reference, and in issues 
of program transformation.  

section 8 concludes with a summary of the status of our transformations and the lessons that we 
have drawn from having built them.  

2. HISTORICAL REFERENCE - A 'SPECIFICATION FREEDOM'  
The naive implementation of historical reference – remembering all information in the 

computation history – is inappropriate even for prototyping or simulation of the specification on 
any but the simplest of test cases, let alone for an efficient implementation. In order to achieve 
efficient implementations it is necessary to convert a specification that uses historical reference 
into one which remembers sufficient but not unnecessarily much information as it executes, and 
to convert its historical references into references of this remembered information. Historical 
reference is thus a 'specification freedom' as termed in [14], namely the freedom of specifications 
to make arbitrary reference to historical information without regard to how this will be 
implemented efficiently.  

2.1 Our specification language  
Our studies have been conducted in the framework an imperative-style state-query 

specification language, Gist [4]. Our target language is AP5 [8], a database oriented extension of 
commonlisp [19]. We have a translation mechanism which converts specifications written in a 
subset of Gist into AP5, where the subset is that which has a direct counterpart in AP5. Historical 
reference in particular has no counterpart, and so must be removed by transformation prior to this 
translation. We will describe only the aspects of these languages relevant to the purposes of this 
paper.  

2.1.1 Relational data structures  
In Gist, the only persistent data structures are relations among atomic objects - more complex 

structures can be represented by such relations. We hope that it is clear that our results could be 
extended to a language with more complex persistent data structures. AP5 too has relations, 
indeed the bulk of AP5 serves to extend commonlisp with a relational database like capability.  



Relations in both Gist and AP5 are declared with the types of the objects that they relate. For 
example, if specifying a lending-library, we might declare a binary relation (relations can be of 
arbitrary arity, not just binary) has-book to hold between objects of type person and type book. 
This relation can be populated by what we call tuples, in this case of arity 2 and whose first 
object is of type person and whose second object is of type book. Relations can be queried - that 
is, we may ask whether the tuple of a given person and book is in the relation. If in the 
specification p denotes an object of type person, and b denotes an object of type book, we would 
write  
has-book(p,b)  
to query whether or not the tuple p,b is in the has-book relation.  

The tuples in a given relation can be changed by inserting tuples into the relation and by 
removing tuples that are already in the relation. We write  
insert has-book(p,b)  
as a statement to insert the tuple p,b into the has-book relation, and remove 
has-book(p,b)  

as a statement to remove the tuple p,b from the has-book relation. Statements such as these 
form the basis for expressing activity in Gist specifications. They can be grouped with 
conventional constructs (conditional, sequential and looping statements, as the bodies of 
procedures, etc.). Execution of an insert or remove statement causes a transition from the current 
state to the next state, where a state comprises the set of objects and relation tuples involving 
those objects. Several insert and remove statements can be executed simultaneously by grouping 
them into an 'atomic' statement, giving rise to a transition in which all their insertions and 
removals of tuples take place at once (in particular, there are no intermediary states in which 
some but not all of those changes have taken place). E.g.,  
atomic { remove has-book(p1,b); insert has-book(p2,b) } 
denotes a transition in which the tuple p1,b is removed from the has-book relation and the tuple 
p2,b is inserted, modeling the transfer of book b from person p1 to p2.  

2.1.2 Historical queries  
By default, a query takes place in the 'current' state. For example, if executing the conditional 

statement  
if has-book(p,b) then ...  
its predicate, the query of whether or not relation has-book holds for the tuple of person p and 
book b, is evaluated in the current state, that is, the state in which the conditional statement is 
being executed. To cause a relation query to be evaluated with respect to state s, where s is not 
necessarily the current state, we would issue the query has-book(p,b) as-of s  

The general form of such a query is2 <predicate> as-of <state>, denoting the 
evaluation of the <predicate> in the <state>. State is a pre-defined type, and can be 
quantified3 over, e.g.,  
exists (s:state) has-book(p,b) as-of s  
asks whether the relation has-book holds or held on the tuple p, b in any state at or before 
the current state (but not in the future - recall that we are limiting our attention to historical 
reference.).  

States can be compared, e.g.,  
exists (s1:state,s2:state) has-book(p1,b) as-of s1 and  

                                                 
2  Using angled braces to enclose nonterminals of the grammar, e.g., <predicate> 
3 The syntax for existential quantification is exists (<name>: <type>, ... ) <predicate>, where 
each <name> is an existentially quantified variable presumably used within <predicate>, and for uni-
versal quantification, all (<name>: <type>, ... ) <predicate>. 



                           has-book(p2,b) as-of s2 and s1 < s2  
queries whether there exist two states s1 and s2 such that has-book held of tuple p1,b in 
s1 and of tuple p2,b in s2, and s1 preceded s2, which we might paraphrase as the 
question: 'did p1 have book b before p2?'  

3. A GENERAL TRANSFORMATION FOR IMPLEMENTATION OF HISTORICAL 
REFERENCE  

We first designed a simple but general transformation to implement (nearly) all historical 
references. This transformation is fully automatic, requiring no user intervention. In this section 
we describe how this transformation works, and give some simple examples.  

The key to efficient implementation of historical reference is to remember sufficient 
information, but not overly much. Since our specification language uses relations as its 
predominant data structure, we designed our transformation to use whole relations as the unit of 
granularity when deciding what to remember.  

The transformation operates in three stages - 1) determine what relations to remember; 2) 
introduce code to cause their values to be remembered; 3) convert historical references of those 
relations into conventional (non-historical) queries of the remembered information.  

3.1 Determining what relations to remember  
Since all historical references take the form of <predicate> as-of <state>, deter-

mining which relations are referenced historically is simply a matter of finding all such as-of 
references, and accumulating a list of which relations are referenced in their predicates. E.g., 
has-book(p,b) as-of s is such a reference, and its predicate references relation has-book.  

Relations whose values are static, that is, are never changed by the specification, need no 
special treatment to remember their values, since their values in some historical state will be 
identical to their values in the current state. Analyzing the specification for relations that are 
never the subject of an insert or remove statement is easy, and provides a conservative 
approximation to identifying static relations (it is a conservative approximation in the sense that 
all relations that it identifies as being static are indeed static, but it is possible that there are static 
relations that it does not identify as such).  

3.2 Remembering  
Our design decision to use whole relations as the unit of granularity directs us to remember 

sufficient information to be able to determine all the tuples that were in any such relation in any 
state of the history. There are a number of choices of precisely what information to remember: at 
one extreme we may choose to make a copy of all a relation's tuples after every state transition - 
this admits the trivial retrieval of the tuples that were in that relation in any given historical state. 
Trading increased computation for decreased storage space, we may instead remember only the 
initial tuples of a relation, and subsequent changes. From this we can calculate what tuples are 
were in the relation in any given historical state. It is this latter style that we have implemented, 
and describe next.  

3.2.1 Remembering incrementally  
Our transformation to remember a relation works by remembering all the initial tuples of that 

relation, and all subsequent changes (i.e., insertion and removal of its tuples). Along with the 
change, we remember the state in which that change took place. To do this, we use integers to 
identify states, numbering from zero up. We could increment this number on every transition, but 
it suffices to do so on only those transitions which make a change to at least one of the 



historically referenced relations whose values we are remembering.4  
The remembered information is held in several relations which the transformation adds to the 

specification. A unary relation, index(integer), is added to hold the integer identifying the 
current state. For each historically referenced relation, the following relations are added:  

• A relation to remember the initial tuples of that relation,  
• A relation to remember insertions of tuples of that relation, and  
• A relation to remember removals of tuples of that relation.  
For example, if has-book(person,book) is a historically referenced relation, then the 

following relations would be added:  
• initially-has-book(person,book) to remember the initial tuples; it holds for a 

person p and a book b if and only if has-book(p,b) held in the initial state (i.e., at the 
start of the computation).  

• inserted-has-book(integer,person,book) to remember insertions of tuples; it 
holds for an integer i, a person p and a book b if and only if has-book(p,b) became 
true in the transition leading into the state represented by integer i.  

• removed-has-book(integer,person,book) to remember removals of tuples; it 
holds for an integer i, a person p and a book b if and only if has-book(p,b) became 
false in the transition leading into the state represented by integer i.  

Code is added to cause the necessary information to be remembered at the time at which it is 
available. Thus at the very start (in the initial state), this code must cause the copying of all the 
values of the historically referenced relations into their corresponding 'initially-' relations. 
Changes to historically referenced relations are remembered by augmenting the statements that 
cause those changes with additional code to remember the change. Thus every insertion/removal 
of a tuple into/out of one of the historically referenced relations is augmented with code to cause 
that tuple to be remembered as having been inserted/removed, placing that information in the 
corresponding 'inserted-'/'removed-' relation. Simultaneously, the integer in the index 
relation is incremented by one.  

For example, if remembering the values of has-book, the following code fragment:  
procedure check-out-book-from-library(p:person,b:book) 
atomic { remove in-library(b);  
         insert has-book(p,b) }  

is transformed into:  
procedure check-out-book-from-library(p:person,b:book)  
atomic { remove in-library(b);  
         if not has-book(p,b)  
         then atomic { insert has-book(p,b);  
                       insert inserted-has-book(index(?)+1,p,b); 
                       remove index(index(?));  
                       insert index(index(?)+1) } }  

                                                 
4 Strictly speaking, we should increment this number on every state change, because there are a few forms 

of historical references that need this information, e.g., counting the number of states that have occurred 
between two events. All such references have what has been termed the 'stuttering' property in temporal logic 
(e.g., see [3]), that is, the insertion of a null transition (a transition in which no inserts or removes take place) 
into the behavior may change the meaning of the reference. The consensus is that references with this property 
are undesirable, and so we have chosen to ignore them. The advantage of taking this liberty is that there is no 
need to augment every primitive statement in the specification with code to increment the state number.  
 



There are some subtleties in the above that need explanation:  

• 'atomic { ... }' denotes that the statements within the braces are all to be executed 
simultaneously (within a single transition). Thus at the same time as has-book(p, b) is 
inserted, the appropriate information is inserted into inserted-has-book, and index is 
changed.  

 
• The conditional 'if not has-book(p,b) ... ': is included because, in the semantics 

of our language, insert of a tuple into a relation is a no-op if the tuple is already in that 
relation. In such a case, for efficiency reasons we do not wish to take any action to 
remember information about this no-op (it would do no harm to the correctness of our 
transformation, but it would be inefficient - consuming unnecessary space). If we could 
show that the tuple is not already in the relation (e.g., perhaps the rest of the specification 
guarantees that the procedure check-out-book-from-library(p,b) is invoked only 
if has-book(p,b) does not already hold), then we could simplify the predicate of the 
conditional to true, and hence simplify the entire conditional to its true branch. We feel 
that such reasoning is best left to other transformations, and so is not incorporated as part 
of our historical reference removal transformation .  

• index is the unary relation holding the integer identifying the current state. When 
remembering information, we must increment this integer by 1 - this is done by remove 
index(index(?))(which removes the current integer from index) and insert 
index(index(?)+1) (which inserts the current integer+1 into index).5  

3.2.2 Remembering incrementally and finite differencing  
Remembering incremental changes to information rather than copying the information at 

each state is characteristic of the efficiency improvements delivered by finite differencing 
transformations [16]. We hand-coded our incremental change remembering transformation. It 
would be interesting to explore the alternative of using the more naive transformation that copies 
information at each state, and then using finite differencing to optimize the code that results.  

3.3 Converting historical references  
Conversion of historical references into equivalent references of the remembered relations is 

split into two sub-parts: 1) for each non-static historically-referenced relation R, say, introduce 
another relation, remembered-R, and define remembered-R in terms of the remembered relations 
introduced to remember initial values and subsequent changes; 2) re-express the historical 
references as equivalent, but conventional (i.e., not using historical reference) queries of these 
defined relations.  

3.3.1 Defining the new relation in terms of the remembered information  
As an example of this definition, consider the historically referenced relation 

has-book(person, book). We add a relation 
remembered-has-book(integer, person, book), and define it so that if has-
book(p,b) holds in the state with integer i, then (and only then) remembered-has-
book(i,p,b) will hold from then onwards. In brief, the definition works by looking for some 
state in which the relation held, and since which it has not been removed. This is expressed as 
follows:  

                                                 
5 In actuality, we employ a syntactic shorthand for this kind of update. 



 
remembered-has-book(s,p,b) iff  
  exists(j:integer)  

( (j=0 and initial-has-book(p,b)) or  
(0<j and j =< s and inserted-has-book(j,p,b)) ) and  

  not exists (k:integer) 
       (j<k and k =< s and removed-has-book(k,p,b) )  

That is, remember-has-book(s,p,b) holds in the state numbered s if and only if there 
exists some state numbered j at or before s in which it held (either because it is the initial state, 
j=0, and it held initially, initial-has-book (p, b), or it is a state at or before s whose 
incoming transition included an insertion of has-book(p, b), i.e., inserted-has-
book(j,p,b)) and since which it hasn't been removed, i.e., there's no state since j, and at or 
before s, whose incoming transition removed has-book(p, b).  

We have carefully crafted this as a non-recursive definition since the target language, AP5, 
does not support recursively defined relations (except for a few special forms). Again, there is an 
alternative pathway to this end, namely expressing it recursively, and relying upon recursion 
removal transformations.  

3.3.2 Converting historical references  
Historical references of non-static relations are converted into equivalent references of the 

corresponding defined relations.  
E.g., exists (s:state) has-book(pl.bl) as-of s 
becomes  
exists (s:integer) remembered-has-book(s,p1,bl)  

Note that the existential quantification over states has become an existential quantification 
over integers, our implementation's means of identifying states. In general, the type state is 
replaced with the type integer, and R(el,e2, ... ,ei) as-of s is replaced with 
remembered-R(s,el,e2,...,ei).  

Historical references of static relations are converted into conventional references of their 
current values. E.g., if title is a static relation, then  
title(bl,tl) as-of s  
becomes simply  
title(bl,tl).  

Prior to conversion, it is necessary to normalize general forms of historical reference, 
<predicate> as-of <state>, for <predicate> more complex than just a relation query, 
into an equivalent form composed of historical references of only relation queries, <relation-
query> as-of <state>.  
For example,  
(has-book(pl,bl) and not has-book(p2.b2)) as-of s  
must be converted into  
(has-book(p1,b1) as-of s) and not (has-book(p2,b2) as-of s)  

To do this, we exhaustively apply the following set of transformation rules until all historical 
references have been transformed into the desired normalized form:  
 
Conjunction  
( <predicatel> and <predicate2> ) as-of <state>  
=>  
( <predicatel> as-of <state> ) and ( <predicate2> as-of 
<state> )  



Disjunction  
( <predicatel> or <predicate2> ) as-of <state>  
=>  
( <predicatel> as-of <state> ) or ( <predicate2> as-of <state> 
)  

Negation  
( not <predicate> ) as-of <state>  
=>  
not ( <predicate> as-of <state> )  

Existential quantification  
( exists ( <variable>:<type>, ... ) <predicate> ) as-of 
<state>  
=>  
exists ( <variable>:<type>, ... ) ( <predicate> as-of <state> 
)  

Universal quantification  
( all ( <variable>:<type>, ... ) <predicate> ) as-of <state>  
=>  
all ( <variable>:<type>, ... ) ( <predicate> as-of <state> )  

Nested historical references  
( <predicate> as-of <statel> ) as-of <state2>  
=>  
( <predicate> as-of <statel> ) and <statel> =< <state2>  

The inequality in the last transformation rule arises from our restriction to historical (past, not 
future) references - when the inner query, '<predicate> as-of <statel>', is evaluated 
in <state2>, only states at or before <state2> can be queried.  

4. TRANSFORMATIONS FOR SPECIAL CASES  
The general purpose transformation described in the previous section limits the information it 

remembers to just those relations that are referenced historically in the specification. This is a 
considerable improvement over remembering all historical information, however it is clear that 
for many special cases of historical reference, the code produced by our transformation is far 
from optimal - it may still be remembering unnecessarily much, and be introducing a particularly 
contorted computation in place of the historical references that it removes.  

4.1 An example of special case historical reference removal 
Consider the simple reference:  

exists (s:state) has-book(p1,b1) as-of s  
To answer queries of this form (for arbitrary p1 and b1) we need remember only whether or 

not has-book has ever held for each person-book tuple. Thus we need only one additional 
relation, ever-has-book(person, book) say, initialized to hold for person p and book b if 
and only if has-book(p, b) holds in the initial state, and inserted whenever has-book(p, 
b) is inserted. E.g., the transformation of the following code fragment inserting has-book:  
procedure check-out-book-from-library(p:person,b:book) 
   atomic { remove in-library(b);  
            insert has-book(p,b) }  

is simply:  



procedure check-out-book-from-library(p:person,b:book)  
   atomic { remove in-library(b);  
            atomic { insert has-book(p,b);  
                     insert ever-has-book(p,b) } }  

Given this, the query  
exists (s: state) has-book(p1, b1) as-of s 
becomes simply: 
ever-has-book(p1,b1)  

This is a saving in several ways - fewer relations are added, less 'remembering' code is 
introduced (there is no need to remember when tuples are removed from has-book, and there is 
no need to remember which state the insertions took place in), and the query that replaces the 
original historical reference is considerably simpler (it is no longer an existential, and does not 
involve a complex defined relation).  

We have built a transformation that implements these 'exists (s: state) <relation-
query> as-of s' style historical references in the above manner.  

4.2 The choice - special-case transformations, or follow-on optimization?  
There are many other special-case forms of historical reference whose implementation can be 

considerably simpler than that produced by our general-purpose transformation. The question is 
therefore whether we should build a suite of such special-purpose transformations, or whether we 
should seek to optimize the code that results from the general-purpose transformation. There are 
pros and cons of either approach:  

4.2.1 Advantages of a suite of special-case transformations  
This is likely to lead to faster transformation, since the special forms can be recognized quite 

rapidly, and the optimal code produced directly, whereas going the other route requires 
producing an intermediate level of complex and somewhat verbose code which a second 
optimization pass must deal with. Also, it is relatively easy to build these special-case 
transformations, whereas the code produced by the general-purpose transformation is not 
particularly easy to reason about, and so we may expect the second phase of optimization to be 
quite tricky.  

4.2.2 Advantages of optimizing the code resulting from the general-purpose 
transformation  

The optimizations that must be performed following application of the general-purpose 
transformation are essentially simplifications of data structures (and the code that 
creates/modifies them) that take advantage of the limited ways in which those structures are 
updated and accessed. Such optimization capabilities would be valuable for all data structures, 
not only those resulting from a historical-reference-removing transformation. Indeed, there is 
some justification to the argument that to put together a reasonably complete transformation 
system, we would have to build this capability anyway, in which case constructing a suite of 
special-case transformations would be a duplication of effort.  

4.3 The optimum, the reality  
We believe that the optimum solution would be to have a separate data-structure optimizing 

transformation able to take the output of our general purpose historical removal transformation, 
and produce code of comparable efficiency to the hand-crafted special-purpose transformations. 
Furthermore, if the speed of the general purpose historical removal transformation followed by 
this data-structure optimizing transformation (i.e., the speed at which they transform, not the 



speed of the transformed code they produce) is inferior to historical removal via special-purpose 
transformations, then those special-purpose transformations should be derived from the 
combination of these two transformations partially applied to the special cases of historical 
reference. It would be interesting to try to gauge the feasibility of this approach given the current 
capabilities of partial evaluation techniques. The partial evaluation paradigm has been applied to 
the complex problem of producing parsers from parser generators by fixing the grammar (e.g., 
[11]), so perhaps it would be viable for this application.  

In practice, we do not have a powerful data-structure optimizing transformation, and so have 
followed the route of building up a suite of special-purpose historical removal transformations to 
deal with those recurring idioms of historical reference whose implementation via our general 
historical removal transformation we deem unacceptably inefficient.  

5. TARGETING TO THE CAPABILITIES OF THE TARGET LANGUAGE  
Each of our historical removal transformations introduces code to cause information to be 

remembered as it arises. The transformations work by traversing the statements of the 
specification, looking for those that insert/remove tuples into/out of historically referenced 
relations, and augmenting those statements with further statements which will run 
simultaneously and remember the appropriate information. This is essentially a 'compilation' of 
the necessary remembering activity into the specification. An alternative is to rely upon a more 
interpretive mechanism that supervises each state change.  

Such a mechanism exists in our target language, AP5 [8]. This mechanism is an interpretive 
cycle that, on every state change, checks the consistency of the prospective new state with 
respect to a set of 'consistency rules'. On detection of a state change that would lead to 
inconsistency, 'repair rules' are applied to (try to) alter the state change so as to lead to a 
consistent state. Briefly, an AP5 repair rule works by proposing further activity (inserts and/or 
removes of tuples) to be done simultaneously with the activity of the transition that is causing the 
consistency rule violation. We can use this to define the code that causes information (relation 
tuples) to be remembered, by defining as a consistency rule the condition that some event has 
occurred that requires information to be remembered, and yet that information has not yet been 
remembered; the 'repair' of this is to cause the appropriate information to be remembered.  

5.1 An example of consistency and repair rules to cause remembering  
Consider the special-case transformation for removing historical references of the form 

exists (s:state) has-book(p,b) as-of s.  
This worked by transforming every insert of a tuple into the has-book relation so as to 

simultaneously insert the ever-has-book relation on the same tuple, e.g.,  
insert has-book(p,b)  
was transformed to  
atomic { insert has-book(p,b); insert ever-has-book(p,b) }  

Using the AP5 consistency & repair rule mechanism, we define the consistency rule: exists 
(p:person,b:book) has-book(p,b) and not ever-has-book(p,b)  
(i.e., has-book holds of the tuple p,b, but ever-has-book does not hold) and the cor-
responding repair rule:  
insert ever-has-book(p,b)  
(i.e., insert ever-has-book to hold of that tuple). Thus whenever has-book is inserted of 
some tuple, the effect of this consistency & repair is to ensure that ever-has-book is also 
inserted if it doesn't already hold.  

In general, our historical reference removal transformations all work by remembering 
information in new relations introduced specially to hold such information. Hence it is always 
possible to express the check for whether information needs to be remembered as a consistency 



rule that examines the changes taking place, and the information already remembered. Likewise, 
it is always possible to express the code to cause information to be remembered as a repair rule 
in response to violations of these consistency rules.  

5.2 Using the AP5 consistency cycle vs. compilation  
The advantages of using the AP5 consistency cycle mechanism in this manner stem from the 

remembering code being expressed simply as a consistency rule together with an associated 
repair. Thus the transformations can operate more speedily (they need not scan the entire 
specification for statements that might require augmentation), and the resulting code is more 
compact (extra statements to remember information have not been scattered through the 
specification).  

Conversely, the resulting code may be less efficient, since the burden is placed on the 
consistency cycle, an operation run on every state change. As a mitigating factor, we would point 
out that considerable effort has been invested in the AP5 implementation to make this cycle 
efficient.  

5.3 The route from Gist to AP5's consistency cycle  
We have described the targeting toward AP5's consistency cycle and repair mechanism as if 

we were transforming Gist specifications directly into AP5. In truth, our historical reference 
removal transformations operate by transforming Gist specifications using historical reference 
into Gist specifications not using historical reference, and it is the latter which are later 
transformed into AP5. It is useful to be able to stay within Gist so that we may apply other Gist-
to-Gist transformations even after historical references have been removed - this offers more 
flexibility in sequencing transformations.  

Unfortunately, Gist has the notion of consistency, but no obvious counterpart of AP5's repair 
rules; a Gist specification denotes those and only those behaviors whose states are all consistent 
(with respect to a set of consistency conditions we call 'constraints'), but apparently has no notion 
of reacting to (and repairing) a transition that is leading to an inconsistent state. Gist does, 
however, have 'demons' - activity invoked in response to the state meeting some condition, and 
has future reference. Thus we can write the remembering code as a demon which looks at the 
next state to see if the condition that necessitates remembering information will occur, and looks 
at the current state to see if the information has not already been remembered - if so, it invokes 
the activity to remember the information, this activity to be done immediately (i.e., 
simultaneously with whatever change is going on).  

Thus the path from Gist with historical reference to AP5 (using AP5's consistency cycle to 
cause information to be remembered) goes through an intermediate level of Gist with no 
historical reference, but somewhat surprisingly, with some (albeit very limited forms of) future 
reference! This is an example of partial overlap between the semantic constructs of two 
languages - we do not know how to convert arbitrary uses of future reference in Gist into AP5, 
yet the very special forms of future reference that we introduce through our historical reference 
removing transformations can all be translated into AP5 (specifically, into uses of the 
consistency & repair rule mechanism).  

6. EXTENDING THE SPECIFICATION LANGUAGE EXPRESSIONS OF 
HISTORICAL REFERENCES  

In what we have described so far, the only way of expressing a historical reference has been 
to use the <predicate> as-of <state> syntax. For ease of specification, we have found it 
useful to provide some more convenient notations for expressing historical references. We use 
automatic translation to cause these to be converted into the basic 'kernel' form of historical 



reference, which our historical reference removing transformations know how to deal with. We 
give some simple examples, and follow with a discussion of the relevance of this to 
transformation.  

We define whenever <predicate> to denote the states in which <predicate> is true.  
E.g.,  
has-book(p,b) as-of whenever true 
is translated into:  
exists (s:state) has-book(p,b) as-of s.  
In a similar manner, we define 'intervals' with the syntax  
during (<state>, <state>)  
e.g.,  
has-book(p,b) as-of during (s1, s2)  
is translated into  
exists (s:state) (has-book(p,b) as-of s) and (s1 < s) and (s < s2)  

Like mathematical intervals, their ends may be be 'open', i.e., not including their endpoints 
(states) (as above) or 'closed', e.g.,  
has-book(p,b) as-of during [s1,s2]  
which translates into:  
exists (s:state) 
   (has-book(p,b) as-of s) and (s1 =< s) and (s =< s2) 
(note the '=<' in place of '<').  

What is of interest is not the particular forms of expression that we have provided (indeed, 
we have had insufficient experience with their use to say whether they are worthy of retention), 
but rather the way in which we make them available. The key to our approach is to build another 
language layer on top of the 'kernel' form of historical reference expression (the <predicate> 
as-of <state> form), and to use translators (a stylized form of automatic transformation - 
see [22] for details) to convert the new notations into uses of the 'kernel' form. (We remark that 
translators are also used to convert a subset of Gist into AP5.) The advantage of this approach is 
a convenient and easily modifiable syntax for expressing historical reference, where the only 
adjustments required are to the translators that automatically convert such syntax into the 
established 'kernel' form. Thus the transformations for removal of historical reference can 
continue to work off of the 'kernel' form, and need not be adapted to deal with the new syntax.  

As in the issue of general-purpose vs. special-purpose historical reference removal 
transformations, we can see a tradeoff here too. Translation into the 'kernel' form represents a 
bottleneck through which all removal of historical references must pass. In particular, special 
cases of historical reference that are expressed concisely using these definitional extensions may 
translate into rather verbose 'kernel' layer equivalents. The alternative would be to redefine the 
special-purpose historical removal transformations to operate on the expressive language 
constructs that we have added. For this choice we perceive that the disadvantages of going 
through the intermediate layer (slower operation of transformations, and perhaps a more verbose 
expression of those transformations) are far outweighed by the advantages (the 'kernel' layer of 
historical reference expression is expected to remain relatively stable, whereas the extensions 
that we provide by translation may well change and extend over time, so by having the historical 
removal transformations operate upon the 'kernel' layer, we decouple them from these more 
frequent changes).  

7. RELATED WORK  
Historical reference in particular has been used in the contexts of:  

• programming languages: e.g., Lucid provides the ability to refer to the sequence of values 



of a variable [2], 

• databases: generally the assumption has been that all past states of the data are retained in 
one form or another in order to be able to answer any query that the user might issue. The 
emphasis of much of this research has been to establish the semantics, and study how to 
query such a database. For example, a simple temporal data model is presented in [1], and 
a user-friendly historical query language is shown in [20].  

• programming environments: e.g., the INTERLISP environment recorded a history of 
interaction with the user to permit the undoing and redoing of past commands [21].  

The historical reference implementation work most closely related work to ours is:  
• In the context of term-rewriting systems, constraints expressed using historical reference to 

the evaluation sequence have been proposed as a means to limit the possible rewriting 
behaviors [9]. As in our approach, historical references are automatically transformed into 
non-historical references by remembering extra information. Whereas their focus is to 
constrain evaluations, ours is a more general goal of supporting arbitrary queries of past 
states' information.  

• A specification language with historical reference to the sequence of 'events' (com-
munications between processes) and a prototyping environment which remembers 
sufficient information to answer historical references, are described in [10]. Their temporal 
language appears designed to facilitate transformation. Similar research is reported in [12], 
although here the transformation towards an efficient non-historical implementation is 
done by first tailoring the historical references, and thereafter translating to a non-
historical form; the first phase appears to require the hand-directed application of 
transformations.  

Transformation work is very extensive, as indicated by the contents of [15] and of this volume. 
The following are of particular relevance:  

• Language extension by definitional transformations [13],  

• Kestrel and Reasoning Systems Inc.'s compiler of a high-level language in a 
transformational style [18, 17],  

• Boyle's transformations between language levels, and the role of normal forms in this 
activity [7, 6],  

• Wile's translations between sub-languages [22], and  

• the definition of the wide-spectrum language CIP-L by transformation to a simple kernel. 
[5]  

The common feature of all of these efforts is the decomposition of the transformation problem 
based on the language layers (or pieces), a phenomenon that clearly arose in our historical 
reference removal transformation.  

8. CONCLUSIONS  
We have argued that historical reference is a specification freedom that can be successfully 

implemented through transformation. Our general purpose transformation does this 
automatically.  

While we took some steps to ensure that the code produced by this transformation is 
reasonably efficient (e.g., remembering initial values of only those relations that are referenced 



historically, and subsequent changes to those relations), we recognized that many special cases 
of historical reference admit to more efficient implementations. To deal with this we have 
embarked on the course of building a suite of special-purpose historical reference removal 
transformations (also automatic), although we recognize the desirability of the alternative of 
building a powerful data-structure optimizer to be run as a follow-on transformation to the 
general-purpose transformation. This choice – of the level at which to build transformations – 
recurs frequently in program transformation.  

Another choice that was open to us was whether or not to use AP5's consistency cycle 
mechanism, which offers an interpretive-like implementation option for part of the historical 
reference implementations. As very high level programming languages become populated with 
such sophisticated mechanisms, targeting transformations to these languages will offer more 
choices of this nature.  

We note that have made repeated use of 'layers' of transformation, from Gist specifications 
using extended notations for historical reference down to the 'kernel' forms of historical 
reference, in turn to Gist with no historical reference, and finally to AP5 (our target language 
which can be executed). Such layering is a commonly used technique for structuring 
transformational developments.  
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